60 research outputs found

    ULTRAFAST COHERENT DISSOCIATION DYNAMICS IN NITROTOLUENE RADICAL CATIONS

    Get PDF
    The ultrafast dynamics of polyatomic radical cations contribute to important processes including initiation of detonation in energetic molecules, radiation-induced DNA damage, and chemical reactions in the upper atmosphere and space. Probing these dynamics in the gas phase is challenging due to the rapid dissociation of many polyatomic radical cations following electron removal. This presentation will discuss how the pump-probe technique of femtosecond time-resolved mass spectrometry (FTRMS) can be a powerful tool for understanding time-resolved vibrational and dissociation dynamics of isolated radical cations and will highlight recent results in our laboratory on 2-, 3-, and 4-nitrotoluene (NT), which serve as model systems for nitroaromatic explosives such as TNT. Our experiments use strong-field, near-infrared (1200--1600 nm) pulses to induce adiabatic tunneling ionization, which prepares a large population of radical cations in the ground state that are amenable to subsequent optical excitation. The resulting electronically cold radical cation is typically prepared in a coherent superposition of highly excited vibrational states, i.e., as a nuclear ``wave packet''. Excitation of the wave packet by the probe pulse at particular time delays accesses electronic excited states that lead to dissociation, thereby resulting in oscillations in the ion yields of the parent and fragment ions as a function of pump-probe delay. These coherent dynamics drive C--\ce{NO2} bond dissociation in all three NT isomers, with each isomer exhibiting a distinct oscillation period depending on the coherently excited vibrational mode. The proximity of the \ce{NO2} and \ce{CH3} moieties in 2-NT also enable a hydrogen atom transfer reaction in the 2-NT cation that proceeds within 2060\sim20-60 fs and preserves the initially prepared vibrational coherence, which demonstrates that coherent vibrational dynamics can continue following an intramolecular rearrangement reaction

    Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    Full text link
    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. Despite inherent differences between the two systems, successful and robust transfer of photonic reagents is demonstrated in the above three circumstances. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed

    Au Nanoparticle Synthesis Via Femtosecond Laser-Induced Photochemical Reduction of [AuCl4]−

    Get PDF
    Laser-assisted metallic nanoparticle synthesis is a versatile “green” method that has become a topic of active research. This chapter discusses the photochemical reaction mechanisms driving AuCl4− reduction using femtosecond-laser irradiation, and reviews recent advances in Au nanoparticle size-control. We begin by describing the physical processes underlying the interactions between laser pulses and the condensed media, including optical breakdown and supercontinuum emission. These processes produce a highly reactive plasma containing free electrons, which reduce AuCl4−, and radical species producing H2O2 that cause autocatalytic growth of Au nanoparticles. Then, we discuss the reduction kinetics of AuCl4−, which follow an autocatalytic rate law in which the first- and second-order rate constants depend on free electrons and H2O2 availability. Finally, we explain strategies to control the size of gold nanoparticles as they are synthesized; including modifications of laser parameters and solution compositions

    Searching for quantum optimal controls under severe constraints

    Full text link
    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, but certain control constraints can still introduce artificial traps. Proper management of these constraints is an issue of great practical importance for numerical simulations as well as optimization in the laboratory. Using optimal control simulations, we show that constraints on quantities such as the number of control variables, the control duration, and the field strength are potentially severe enough to prevent successful optimization of the objective. For each such constraint, we show that exceeding quantifiable limits can prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.Comment: 16 pages, 7 figure

    Exploring the trade-off between fidelity- and time-optimal control of quantum unitary transformations

    Full text link
    Generating a unitary transformation in the shortest possible time is of practical importance to quantum information processing because it helps to reduce decoherence effects and improve robustness to additive control field noise. Many analytical and numerical studies have identified the minimum time necessary to implement a variety of quantum gates on coupled-spin qubit systems. This work focuses on exploring the Pareto front that quantifies the trade-off between the competitive objectives of maximizing the gate fidelity F\mathcal{F} and minimizing the control time TT. In order to identify the critical time TT^{\ast}, below which the target transformation is not reachable, as well as to determine the associated Pareto front, we introduce a numerical method of Pareto front tracking (PFT). We consider closed two- and multi-qubit systems with constant inter-qubit coupling strengths and each individual qubit controlled by a separate time-dependent external field. Our analysis demonstrates that unit fidelity (to a desired numerical accuracy) can be achieved at any TTT \geq T^{\ast} in most cases. However, the optimization search effort rises superexponentially as TT decreases and approaches TT^{\ast}. Furthermore, a small decrease in control time incurs a significant penalty in fidelity for T<TT < T^{\ast}, indicating that it is generally undesirable to operate below the critical time. We investigate the dependence of the critical time TT^{\ast} on the coupling strength between qubits and the target gate transformation. Practical consequences of these findings for laboratory implementation of quantum gates are discussed.Comment: 23 pages, 11 figure

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore